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Abstract
A simple model is presented to explore, review and illustrate basic concepts
related to the electronic stopping power in large electronic band gap insulators.
A projectile shooting through the solid is described by a local potential
V (r − vt). The flat band limit is assumed for both valence and conduction
bands. The energy-transfer rate is calculated by solving the time-dependent
quantum mechanics for the timescale of electron excitation near the trajectory,
taking the timescale for electronic energy out-diffusion to be much larger. The
threshold effect in the low projectile velocity limit is characterized.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the physics of ions moving through solids [1, 2] it is customary to differentiate between the
energy transferred by the projectile to nuclear motions, the rate of which is called the nuclear
stopping power, and the energy transferred to electronic excitations, giving the electronic
stopping power. The distinction is relevant since the different masses of nuclei and electrons
give rise to different response regimes: the nuclear stopping power dominates at lower projectile
velocities, while the electrons respond more readily at higher speeds. It is also a convenient
decoupling, since two limits can be studied and understood more easily: electronic excitations
for frozen nuclei, in the high-velocity regime, and atomic motions with electrons following
adiabatically in the slow regime. Intermediate cases are, as ever, harder to describe. Such is
the situation encountered when facing the damage produced in materials when subjected to
radioactive decay processes.

An alpha decay of a heavy nucleus produces an alpha particle shooting through the host
material with a kinetic energy of ∼5 MeV (velocity ∼ 7 au), whilst the remaining nucleus
recoils with ∼100 keV (v ∼ 0.1 au). The damage produced by the recoiling nucleus has been
simulated theoretically in the adiabatic limit [3, 4], since it is known that nuclear stopping
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dominates [1]. It has not been established, however, how much electronic stopping there is in
these events. It is an important question, since local electronic excitation can substantially alter
the interatomic interactions and thus may affect the reliability of the simulations.

Direct experimental knowledge of electronic stopping power at low velocities is hard to
obtain, given the larger contribution of the nuclei to the stopping. A better overall understanding
of electronic stopping in metals, which predicts a linear dependence with velocity in the slow
regime, allows a better characterization [2]. For insulators, however, a threshold effect is
expected and has been experimentally observed [5]: a highly nonlinear behaviour very difficult
to access experimentally, which prevents any quantitative assessment of the importance of the
electronic excitation at the recoil velocities mentioned above. This is of special relevance for
the study of the glasses and ceramic materials used and proposed for hosting nuclear waste.

While the electronic stopping power values are being obtained from first-principles time-
dependent calculations elsewhere [6], this paper concentrates on qualitative aspects of the
expected behaviour by focusing on a simple model obtained in the flat-band limit. It is
a different approach from the usual perturbative, linear-response based studies, which have
offered important insights, but have been mostly applied to metals and/or weak perturbing
potentials [2]. The model allows for a non-perturbative hierarchy of approximations of
increasing complexity towards insulating solids. This papers sets the scene by limiting itself to
the simplest level, which allows the introduction of several fundamental concepts in an intuitive
manner.

There are interesting connections of the following to earlier works in the quantum
chemistry community, where there is a long and fruitful history of research on non-adiabatic
collisions between atoms [7]. In addition to their different context, this work differs from earlier
quantum chemistry work in the fact that it does not need well-defined asymptotic exit channels,
since the excitations induced by the projectile in a solid find an infinity of thermalization
channels. The model is introduced in section 2 as well as the main approximations, and some
results are presented and discussed in section 3.

2. Model

The electronic structure of the host material is described by dispersionless valence and
conduction bands separated by a band gap Eg,

Ho = ε
∑

i,σ

nv,i,σ + (ε + Eg)
∑

i,σ

nc,i,σ (1)

where v and c stand for valence and conduction states, respectively, and i runs over localized
Wannier-like states. Valence (conduction) localized states can be visualized as the bonding
(anti-bonding) states for each bond in a covalent solid, or states localized on the anions (cations)
in an ionic solid. Only one valence band and one conduction band are considered. The effect
of going beyond this flat-band approximation will be explored in section 3 only for the results
obtained through perturbation theory. An effective one-particle picture will be used throughout,
disregarding self-consistency and electronic correlation effects.

Assuming for simplicity a local, spin-independent potential, V (r), to describe the
projectile, its effect on the electrons as it moves through the solid with a given velocity, v,
is described by V (r − vt), and thus,

H = Ho +
∑

i, j,σ

[
Vi, j(t)c

†
c,i,σ cv, j,σ + h.c.

]
, (2)

where the c–c and v–v hybridizations have been neglected, and where
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Vi, j (t) =
∫

d3rψ∗
c,i (r)V (r − vt)ψv, j (r), (3)

i.e., a convolution of the local overlap of valence and conduction functions with the moving
potential. The inclusion of c–c and v–v hybridizations would represent a dynamical redefinition
of the localized (eigen)states, which, at the level of this analysis, can be thought of as redefining
Vi, j (t). The c–c and v–v hybridizations on their own do not produce excitation: the energy
changes while the projectile passes, but the system never leaves the adiabatic ground state and
thus goes back to the unperturbed ground state after the passage of the projectile.

The basic question is, starting from an initial situation of filled valence band and empty
conduction band, what will be the rate of energy transfer from the projectile to the electrons.
This can be addressed by following the explicit dynamics of the N electrons described by
the Hamiltonian of equation (2), i.e., solving H |�(t)〉 = ih̄∂|�(t)〉/∂ t with |�(0)〉 =∏

v,i,σ c†
v,i,σ |0〉. For independent particles this is equivalent to following the dynamics of each

one of the initially occupied one-electron states. The same language is maintained within mean-
field-like approximations, like in time-dependent Kohn–Sham theory [8], except that the time-
dependent potential depends on the states and their evolution. The solution allows obtaining
E(t) = 〈�(t)|H (t)|�(t)〉, and S = 1

v

dE(t)
dt gives the stopping power as conventionally

expressed (energy per unit length).
Two further simplifications are assumed. Firstly, the velocity is taken to be a constant,

given the very small stopping that occurs in the length scales considered in this work (stopping
powers of ∼1 eV Å

−1
over a few Å imply negligible changes in velocity if the incoming

kinetic energy is ∼100 keV). The system becomes non-conservative, however. The second
approximation is more drastic: it is assumed that any one valence state substantially overlaps
with only one conduction state, rendering other pairings negligible. Assuming one to one
regularity, v–c pairs will be labelled with the same i index.

This extremely simplified model becomes a collection of non-interacting two-state
subsystems. As the projectile moves it excites the subsystems within its potential range.
Subsystem i sees a time-dependent potential that takes it from |ψi (0)〉 = |ψv,i 〉 to

|ψi (t)〉 = e−iεt/h̄
(
αi |ψv,i 〉 + e−iEgt/h̄βi |ψc,i 〉

)
, (4)

for long enough times after the passage of the projectile. The projectile leaves the subsystem
with a final excitation energy of |βi |2 Eg for each spin (we shall drop the spin dependence
henceforth for simplicity). The value of βi depends on the whole history of the passage and
can be obtained by integrating the dynamics.

The excitation energy is expected to equilibrate away into the solid at longer timescales.
This energy redistribution among subsystems is not explored in this analysis, beyond the fact
that it is a conservative process (also involving the system phonons), and that it is unlikely to
outrun the projectile i.e., it will define a wake [9]. Our model thus assumes a decoupling of
both timescales, excitation and equilibration, which is more justified the narrower the electronic
bands. Phonon timescales are indeed much larger. Long-range projectile potentials, however,
would not allow such decoupling, since the characteristic duration of the perturbation scales
with the range of the potential. Short range is assumed in this paper.

For a crystalline system, the energy transfer per unit length given by this model is stationary
by construction, up to an oscillation of period L, the repetition length of the crystal along the
projectile direction. For a given (straight) trajectory of the projectile in the crystal, consider a
two-dimensionally infinite slab of the crystal, of thickness L, perpendicular to that trajectory.
The average stopping power is

S = Eg

L

slab∑

i

|βi |2 (5)
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taking the sum over the subsystems associated to the slab. Subsystems closer to the trajectory
will feel a larger projectile potential Vi,i (t). It will decay with the distance of subsystem i from
the trajectory.

The energy absorbed by each subsystem is what needs calculating, by means of solving
the time-dependent Schrödinger equation, which becomes

ih̄
∂C

∂ t
= H C (6)

where the subsystem label has been dropped, and with

H =
(

0 V (t)
V (t) Eg

)
, (7)

where ε has been taken as 0. The V (t) function can be expressed as Vo f (t/τ), where f (χ)
is chosen such that max{| f (χ)|} = 1 (even if V (r) can be divergent, its convolution with
sensible localized states will not), and, if short ranged, the characteristic width of f (χ) is 1,
so the characteristic time of passage of V is τ . This time τ ∝ 1/v, i.e., increasing velocity
narrows the potential V (t), but neither height nor shape are altered.

The parameters of the model are thus Eg, Vo and τ , in addition to the shape of the
perturbing potential. Setting the energy scale (e.g. Eg = 1) and having defined the timescale
by the energy scale and h̄ (e.g. h̄ = 1), the remaining parameters are Vo and the velocity v.
Indeed, a rescaling of the velocity (or of τ ) is equivalent to a change of energy units, and thus
increasing the velocity by α is equivalent to increasing both Eg and Vo by α for the original
velocity. If numbers are to be extracted from this analysis, a length scale is needed for a proper
definition of velocity. The scale is defined by the characteristic width W of the convolution

[
V ◦ ψ∗

cψv
]
(r) =

∫
d3r′ψ∗

c (r
′)V (r′ − r)ψv(r′) (8)

along the direction of the motion of the projectile, i.e., at a velocity v the projectile advances
by W in a time τ .

Some of the results presented below have been obtained by numerically solving
equation (6). A Crank–Nicholson algorithm has been used for the purpose, in which time
is discretized in steps of �t and the evolution of the coefficients is approximated by

C(t +�t) =
[

1 − i
�t

2
H

]−1 (
1 + i

�t

2
H

)
C(t). (9)

Converged stable results for the potentials below are achieved with �t ∼ 0.05h̄/Eg.

3. Results and discussion

3.1. Weak perturbation

If the perturbation is weak (Vo 	 Eg), time-dependent perturbation theory can be used and the
problem simplifies extremely, since

|β|2 = 1

h̄2

∣∣∣Ṽ (ω = Eg/h̄)
∣∣∣
2
, (10)

i.e., the square of the Fourier transform of V (t) evaluated at h̄ω = Eg. The velocity dependence
enters by scaling the width τ . If τ → ατ (or v → v/α), then Ṽ (ω) → αṼ (αω), i.e.,

|β|2 ∝ 1

v2

∣∣∣Ṽ (ω ∝ Eg/v)

∣∣∣
2
, (11)
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Figure 1. (a) Comparison between the perturbative (symbols; �E = πV 2
o e

− 1
2

(
1
v

)2

/v2) and exact
solution (line) for the subsystem excitation energy �E = Eg|β|2 for a Gaussian potential of
amplitude Vo = 0.002Eg. Illustration of perturbative transitions induced by a passing projectile
of velocity v for dispersionless bands (b), direct band gap parabolic bands (c), and periodic bands,
(d) and (e). (c) illustrates a transition for a strict threshold: a larger gap (or smaller v) would prevent
stopping completely. (d) shows a similar critical velocity, leading to an abrupt (but incomplete)
reduction of stopping at lower v. (e) illustrates the v → 0 asymptotics, made of critical points.

or, specifically,

|β| = VoW

vh̄

∣∣∣∣ f̃

(
EgW

h̄v

)∣∣∣∣ = Vo

Eg

vo

v

∣∣∣ f̃
(vo

v

)∣∣∣ , (12)

f̃ being the Fourier transform of f , and vo ≡ EgW/h̄. The low-velocity behaviour is thus
controlled by the high-frequency asymptotics of the Fourier transform of V (t). The smoothness
of the wavefunctions in the convolution (equation (3)) gives rise to short-ranged Ṽ (ω), which
defines a distinctive threshold with a sub-power-law behaviour at low velocities. For example,
Gaussian smoothness would imply a stopping power (for one only subsystem) going as

S ∼ V 2
o

EgL

v2
o

v2
e−v2

o/2v
2

(13)

at low v. Figure 1(a) indeed shows the perfect agreement between this expression and the
non-perturbative solution of the model for a Gaussian perturbation and Vo/Eg = 0.002. It is
interesting to note that the peak in this figure happens for v ∼ vo, i.e., for Egτ ∼ h̄, which
could have been obtained from uncertainty arguments.

The results above can also be seen in terms of extended states, still within the dispersionless
approximation. Assuming, for simplicity in the notation, one Wannier function per unit cell,
and thus a lattice vector R for each i index, the ψi (i.e., the ψR) relate to the ψk by a Bloch
transformation. Considering crystal momentum conservation, only the q component of the real-
space Fourier transform of V (r) offers a non-zero oscillator strength to transitions between k
and k + q, and the time dependence being of the form V (r − vt) implies that the excitations
induced by the moving projectile are such that

v · q = ω, (14)

with ω = Eg/h̄ in the dispersionless case. This is illustrated in figure 1(b). Equation (14)
is analogous to the expression relating the change in energy with the change in momentum
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of a classical particle when colliding with a much more massive particle of velocity v:
v ·�p = �E . The sum over all transitions satisfying equation (14), with the corresponding
oscillator strengths, would yield the same result as before, with the same threshold at low
velocities controlled by the tail of the Fourier transform of V .

So reformulated, this analysis can be extended to dispersing bands. In a model direct band
gap insulator with parabolic bands for both electrons and holes, as in figure 1(c), the excitation
relation in equation (14) implies that any velocity below a critical value will not find allowed
excitations. This critical velocity is

vc =
√

2Eg

me + mh
, (15)

where mh and me are the effective masses of holes and electrons, respectively. Expressed
otherwise, Eg = 1

2 mev
2
c + 1

2 mhv
2
c . For lower velocities the stopping power is zero, a definitive

threshold.
What happens at the critical velocity is singular, and the kind of singularity depends on

the dimensionality in a very similar way as Van Hove singularities in densities of states. In
strictly one dimension and assuming a smooth behaviour of the Fourier transform of V , the
stopping power would peak before dropping to zero, since at the threshold the excitation line
(equation (14)) is tangent to the two parabolas. In higher dimensions, equation (14) defines a
hyperplane in the (ω,k) space with effective excitation slopes ω/k � v, and thus less dramatic
behaviours the higher the dimension. These singularities are weighted by the tail of the Fourier
transform of V (r), and thus, any broadening will make them disappear at large q (low v).

The parabolic bands represent only a very simplified model. A real solid displays bands
periodic with k, and thus no matter how slow the projectile moves, equation (14) will still find
suitable excitations, still weighted by the tail in the Fourier transform of V . The parabolic
model illustrates, however, actual singularities for realistic band structures: critical velocities
defined by tangent situations are still possible, as shown in figure 1(d), which induce a
substantial drop in the stopping power towards lower velocities, since they are associated to
a finite jump to larger q. Interestingly, the low-v asymptotics is affected by such singularities.
As can be seen in figure 1(e), infinitesimal changes in slope induce finite jumps in q, the more
frequent the lower v. The limit is thus made of singularities superimposed to the tail of the
Fourier transform of V .

3.2. Square-potential perturbation

The previous analysis was limited to small perturbing potentials, where the unperturbed band
gap Eg dominates the physics. Real projectiles tend to have associated not so small perturbing
potentials, which demand non-perturbative analysis. We go back to the dispersionless model.

Before getting into the dynamics of two-state systems with realistic potentials, a very
idealized one gives interesting insights. Consider the following square potential,

V (t) =
{

0 t < 0, t > τ

Vo 0 � t � τ ,
(16)

where Vo can be large. The solution is simple. For the duration of the pulse, the Hamiltonian
Ho + V has well-defined eigenvectors [χ1(r) and χ2(r)] and eigenvalues (ε1 and ε2) which
define the evolution of the system. Expressing the initial state as ψv(r) = c1χ1(r) + c2χ1(r),
its evolution is given by

ψ(r, t) = c1e−iε1t/h̄χ1(r)+ c2e−iε2t/h̄χ2(r). (17)

6
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By evaluating this expression for t = τ and re-expressing it in terms of ψv and ψc, the sought
value of β is obtained.

The explicit solution does not bring much to the discussion, except for the following. It is
easy to see that equation (17) describes Rabi oscillations of angular frequency (ε2−ε1)/2h̄ [10].
After every half period the wavefunction goes back to the initial state, up to a phase (β becomes
zero), and therefore if τ = 2πnh̄/(ε2 − ε1) the energy transfer is zero.

Three interesting insights are provided by this result: firstly, the Rabi oscillations in the
excitation, i.e., in c2(t), give rise to oscillations in β(τ) that are trivially identical. It will be
shown below how, for arbitrary potentials, c2(t) describes oscillations that are reminiscent of
Rabi oscillations, but which can be quite irregular, while there are quite well-defined effective
Rabi oscillations in β(τ).

Secondly, it is the perturbed band gap ε2 − ε1 that is the one controlling the stopping (the
oscillations), not Eg. This can be related to the perturbation theory results above by noticing
that it coincides with the Fourier transform of the V (t) double step function,

Ṽ (ω) = Vo sin(ωτ/2)/ω, (18)

evaluated at the perturbed gap. However, an arbitrary V (t) does not define a static perturbed
gap, but a time-dependent one, which would only make sense as such in the adiabatic limit,
of no interest here. An effective (or average) perturbed band gap can thus be defined from the
period of the effective Rabi oscillations.

Thirdly, this potential does not define a threshold at low velocities. The |β(τ)| oscillations
mentioned do not decay with large τ , and thus, when plotted versus velocity, �E = Eg|β|2
oscillates with constant amplitude and diverging frequency when v → 0. This is equally valid
for Vo 	 Eg, and thus should be captured by the perturbation analysis above. Indeed, the long
range of Ṽ (ω) gives �E ∝ sin2(vo/v).

3.3. Numerical solutions: Gaussian perturbation

The case for a more general perturbing potential is studied next by means of the numerical
solution of equation (6). The following Gaussian perturbing potential is considered in this
section:

V (t) = Voe−(t/τ)2 , (19)

where τ ∝ 1/v. Figure 2 displays the main results. The first column shows the time evolution
of the transferred energy for different values of Vo and τ . It displays oscillations reminiscent
of Rabi oscillations, but very much distorted by the specifics of the potential. More instructive
is to plot the final energy transferred, or rather |β|, versus the characteristic duration of the
pulse τ . This is shown in the middle column of figure 2. There are very clean effective Rabi
oscillations, with a decaying amplitude. For values of Vo equal to or larger than Eg these |β(τ)|
oscillations have a remarkably constant frequency. They reflect the number of periods of the
oscillations of |c2(t)| that fit within the scope of the potential, i.e., the frequency observed for
|β(τ)| reflects some average frequency of |c2(t)|.

The overall behaviour is approximately captured by

|β| ∼ e−(τ/τo)
η

sin 2π
τ

T
, (20)

at least for Vo > Eg. The two upper panels of the middle column in figure 2 show fits to this
expression superimposed to the numerical solutions. The fits are barely distinguishable from
the data even for Vo = Eg. In this regime (Vo > Eg), it is observed that T ∝ 1/Vo, τo ∝ Vo,
and η → 3/2. It was shown before that the perturbative limit (Vo 	 Eg) for η is 2.

7
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Figure 2. First column: evolution of the excitation energy, �E(t) = E(t) − EBO
G.S.(t), referring to

the Born–Oppenheimer ground-state energy EBO
G.S. , as the projectile passes, for Vo/Eg = 5.0, 1.0,

and 0.2, in the upper, medium and lower panels, respectively, with graphs for τ = 0.2, 0.8, 1.4, and
2.0, as indicated. Second column: |β|(τ ) for the same values of Vo. The upper panels compare the
numerical solution with the fit with equation (20). Third column: final excitation energy �E(∞)

versus v = 1/τ .

The third column of figure 2 shows the velocity dependence of the transferred energy,
analogous to that of the stopping power. The low-Vo regime shows the behaviour expected
from the perturbation theory analysis above. The effective Rabi oscillations described above
for the large-Vo regime appear here as oscillations of diverging frequency for v → 0, with an
amplitude that defines a threshold going as exp[−2( W

vτo
)3/2], only slightly less abrupt than the

perturbative one.
The high-velocity limit given by this model corresponds to the τ → 0 limit, which

displays a linear dependence of |β| with τ , i.e., a 1/v2 dependence of the stopping power
at large velocities. It appears quite naturally from this perspective, as the low-τ limit of the sine
function in equation (20). The fact that it goes to zero is quite expected, given the fact that the
pulse becomes infinitely short (still of Vo amplitude). The linear behaviour of β(τ) also seems
natural, considering that the amount of effective period covered is proportional to the duration.

4. Conclusions and outlook

A simple model has been used to explore, review and illustrate basic fundamentals of the
process of stopping of projectile ions by electrons in a large band gap insulator, with special
emphasis on the behaviour at low projectile velocities. Many simplifying assumptions have
been made, including the neglect of electronic correlation and self-consistency effects. From
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the compared analysis of two different limits, the perturbative Vo 	 Eg and the dispersionless
bands limits, the following insights are obtained.

(i) The threshold character at low velocities depends on the smoothness of the convolution of
the projectile potential with the local overlap between initial and final states. Well-defined
thresholds appear for short-ranged Fourier transforms of that convoluted potential.

(ii) For non-flat bands the threshold becomes highly non-analytical, at least in the perturbative
limit, with singular points crowding towards the v → 0 limit.

(iii) Although there are no strict Rabi oscillations in the dynamics related to the passing of an
arbitrary potential, effective Rabi oscillations are observed in the dependence of the final
energy transferred on the duration of the pulse, for a given projectile potential shape.

(iv) The known dependence on the energy gap Eg of the stopping characteristics for the
perturbative limit transforms into a dependence on an average perturbed gap.

There are obvious limitations in the model discussed in this work. The oscillations will
tend to disappear when the potential is allowed for more than one excitation channel from
any given valence state. Also, projectile charge states have not been contemplated here: the
projectile can drag electrons, as is obvious for deep core states. More weakly bound electrons
are more difficult to treat, and have been considered elsewhere [2, 11, 12]. It also raises issues
related to the momentum transferred to electrons, which has been consistently neglected in
the context of the dispersionless limit. The model of this work can be easily extended to
get qualitative insights into the effects of these other ingredients. However, the necessary
introduction of more parameters would render the extended model more difficult to exploit
as a simple paradigm.

Other shapes of the projectile potential can also be studied for more quantitative or
intermediate studies. More fruitful is the deeper study of the specifics of the low-velocity
threshold explicitly exploiting the low-velocity limit. For this purpose, the adiabatic limit can
be considered as unperturbed reference, and perturbation theory be used for the deviation from
adiabaticity. The dynamic coupling coefficients would allow further qualitative insights into
the velocity threshold for insulators. Indeed, the adiabatic theorem [13] immediately suggests
a threshold insofar as it predicts negligible excitation when the rate of change of the adiabatic
eigenvalues (and thus of the perturbation) is much smaller than the characteristic energy change
rate of the system, �E2/h̄. This is a sufficient condition for low stopping values, but not a
necessary one: we saw zero stopping situations related to the width of the pulse. The model
presented in this work captures several non-trivial concepts into a very simple paradigm.
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